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Smoothed	Particle	Hydrodynamics	(SPH)

A	meshless	Lagrangian method	where	fluid	quantities	
are	carried	by	moving	interpolation	points	(particles	
with	mass)	which	follow	the	fluid	motion.	

A	physical	quantity	at	point	(or	particle)	“a”	is	given	by:	
𝐴(𝑟)! = D

"

𝑚"
𝜌"

𝐴 𝑟" 𝑊 𝑟 − 𝑟" , ℎ

SPH Advantages:
• Possesses excellent conservation properties
• Advects quantities exactly (by construction)
• Has resolution where it's needed without remeshing

(because the method is mesh-free)
• Angular momentum conservation is built-in, which

is difficult to achieve in a grid-based code
• Treatment of vacuum Loiseau	et	al.	(2020)
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FleCSPH (Loiseau et al., Software X (2020)): SPH code build with the LANL FleCSI numerical
framework as part of the LANL Ristra Project. FleCSPH is a general-purpose SPH code but has
been mainly applied to astrophysical problems. Some core capabilities are:

1. Implementation	of	different	SPH	kernels
2. Fast-Multipole	Method :	A	particle-based	Poisson	solver	for	Newtonian	gravity
3. Astrophysical	EoSs:	

1. Analytic:	Ideal	gas,	polytropic,	piecewise	polytropic,	cold	white	dwarf
2. Tabulated:	Finite-temperature	nuclear	matter	(StellarCollapse),	Helmholtz

4. Material	EoSs:	Liquid,	Mie-Grüneisen,	Osborne,	Tillotson	
5. External	potentials for	boundary	conditions	and	specifying	external	forces
6. Fixed	general-relativistic	background	/	curvilinear	coordinates for	static	and	rotating	stars
7. Strength	via	the	elastic-perfectly-plastic (+hardening)	model	and	maximum	strain	breaking	

https://github.com/laristra/flecsph.	

FleCSPH
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Strength	in	Astrophysics

The crust of a neutron star is the strongest
material in Nature. The crust could play a role in
neutron star mergers, e.g. break due to tidal forces
(Penner et al. (2021), Gittins et al. (2020)) or
resonant excitations (Tsang et al. (2021)), or
induce a gravitational phase shift via viscous
damping (Kochanek (1992)) or elastic-to-plastic
transitions (Pan et al. (2020)).

For impacts on asteroids, material
strength is a factor in crater
formation. Including solid material
properties into asteroid impact
studies improves our
understanding of accretion and
disruption events in the solar
system as well as planet formation.

Caldwell	et	al.	
(2020)

SPHERAL,	LLNL
NASA/Swift/Dana	BerryCaplan	(2017)
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Material	Strength	Implementation
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Conservation	Equations

Fluid	dynamics	codes	generally	solve	the	following	conservation	equations:	

1. Conservation	of	mass:	!"
!#
= − ρ $%

!

$&!

2. Conservation	of	momentum:		!%
!

!#
= '

"
$(!"

$&"

3. Conservation	of	energy:	!)
!#
= − (!"

"
$%!

$&"

The	form	of	the	stress	tensor	σ*+depends	on	the	modeled	material,	e.g.	

σ*+ = Pδ*+ (gas)
σ*+ = Pδ*+ + S*+ (solid)
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While information on the pressure is obtained from
a given equation of state, the information on the
deviatoric stress tensor S*+ given a specific
deformation, is provided by an elasticity/plasticity
model.

For elasticity, the simplest example is Hooke’s Law
where 𝑆*+ is given in terms of the strain tensor ϵ*+:

S*+ = 2µ ϵ*+ −
1
3 ϵ

,,δ*+

with	a	material-dependent	shear	modulus	µ.

Elasticity
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For	large	strains,	material	can	undergo	plastic	
deformation.
We	need	to	know	a	yield	criterion	(i.e.	when	plasticity	
sets	in)	and	have	a	corresponding	model	for	the	
behavior	of	S*+.	One	successful	criterion	is	the	van-
Mises	yielding	criterion:

σ% = 3J- =
.
-
S*+S*+

which	is	used	in	the	perfectly	plastic	model	to	limit	:											

S*+ → fS*+ = min
Y/
σ%
, 1 S*+

Plasticity

i.e.	yielding	sets	in	when	the	2nd	deviator	stress	invariant	J- reaches	or	exceeds	the	
yield	strength	𝑌/ .
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1. Conservation	of	mass:		!"
!#
= − ρ $
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2. Conservation	of	momentum:																																																																																														
!'D

!#
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−Pδ&) + fS&) , f = min *F
+G
, 1 , σ' =
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3. Conservation	of	energy:		!.
!#
= − /

"
$
$%D

v& + (
"
fS&)ϵ̇&)

4. Time	evolution	of	the	deviatoric	stress	tensor:
dS&)

dt = 2µ ϵ̇&) −
1
3 ϵ̇

00δ&0 + fS&0 Ṙ0) − Ṙ&0 fS0)

Conservation	Equations	for	the	Elastic-Perfectly-Plastic	Model
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• Strain	rate	tensor:	ϵ̇&) = (
-"H

∑m3 v31
& $4HI

$%H
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) $4HI
$%HD

• Rotation	rate	tensor:	Ṙ&) = (
-"H

∑m3 v31&
$4HI

$%H
E − v31

) $4HI
$%HD

SPH	Discretization	of	the	Elastic-Perfectly-Plastic	Model:
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Maximum-Strain	Damage	Model

To	simulate	material	failure,	damage	is	often	treated	as	a	state	variable	and	
evolved	in	time	to	describe	the	growth	of	cracks.	
We	are	currently	using	a	maximum-strain	damage	model	in	which	failure	occurs	
once	the	breaking	strain	is	reached.	

In	order	to	determine	is	a	particle	exceeds	the	breaking	strain	during	the	
simulation,	we	derive	the	local	scalar	strain	from	the	3D	stress.	
For this, we compute the local scalar strain from the maximum tensile stress
σ01& = max σ', σ-, σ. where σ, are the principal stresses determined by a
principal axis transformation of the stress tensor σ*+.

The	local	strain	is	given	by	ϵ = (#$%
2
, E = 345

.465
.
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We	calculate	the	inclement	of	plastic	strain:	

∆𝜖7 =
𝜎8 − 𝑌(𝜖7)
3𝜇 + 𝐻

The	yield	stress	is	incremented	according	to:	

𝒀 𝝐𝒑 + 𝚫𝝐𝒑 = 𝒀𝟎 +𝑯 𝝐𝒑 + ∆𝝐𝒑 ,

with	the	hardening	modulus	H . The	deviatoric	stress	
is	update	according	to	

S*+ → fS*+ = min
𝑌
σ%
, 1 S*+

Plasticity	– Linear	Isotropic	Hardening	
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The	so-called	tensile	instability can	occur	in	SPH	when	
negative	pressure	or	tension	is	present.	The	instability	
leads	to	artificial	numerical	clumping of	particles	which	
then	results	in	unphysical	fragmentation.	

One	way	to	overcome	the	tensile	instability	is	to	add	a	
small	repulsive	artificial	tress	𝜉KL:

dvMN

dt

= −DmO
𝜎!
KL

ρMP
+
𝜎"
KL

ρOP
+ 𝜉!"

KL 𝑊!"
𝑊QR

S
+ ΠMO

𝜕WMO
𝜕xMN

where	𝜉!
KL = −𝜖T

U!
"#

V!$
and	is	set	to	0	for	compression.

Tensile	Instability:
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Numerical	Tests
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• Two rubber rings with a density of ρ0 = 1.01 g/cm3, sound speed c0 = 8.54 × 104 cm/s,
shear modulus µ = 0.22 ρ0 c02 collide at 0.118 c0.

• The rings have an initial inner and outer radius of 3cm and 4cm, respectively.
• The pressure is given by the liquid EoS
• The basic test includes elasticity only but we also test the effect of plasticity and breaking

After colliding, the rings bounce off each other, and begin to swing as they move in opposite
directions. While simple, the setup is powerful in testing artificial fragmentation due to
tensile instability, symmetry of the code, and dissipation.

A	test	for	the	numerical	
implementation	of	elasticity
(Swegle 1992,	Gray	et	al.	2001,	
Schäfer	2005).	

Colliding	Rubber	Rings Fig.: Colliding rubber rings modeled with FleCSPH before
the collision (left) and after maximum compression (right)
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We	find	good	agreement	of	the	velocity	distribution	and	the	ring	geometry	with	previous	studies.

Schäfer	et	al.	2005

Colliding	Rubber	Rings
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FleCSPH
Figs.: Colliding rubber rings modeled with an SPH
code by Schaefer et al. (left) and results of a similar
setup with FleCSPH (middle).
Bottom: Comparison of ring width, height, and
distance between different SPH and Eulerian codes
(points) including FleCSPH (lines).
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Some	preliminary	tests	with	plasticity	and	breaking	have	been	performed

Colliding	Rubber	Rings
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(e.g. Howell & Ball, JCP 175 (2002))

• A metal shell receives a radial inward velocity
• During the convergence, the shell thickens and its

kinetic energy is converted into internal energy through
the dissipative plastic distortion mechanism.

• The collapse terminates at a stopping radius which is a
function of the initial conditions.

• The test is done in 2D (cylindrical shell) and 3D
(spherical shell).

• The metal shell is made of Beryllium and described by
the Osborne material EoS.

• The strength model is elastic-perfectly-plastic with 𝜇 =
1.5111×10bb Ba and 𝑌c = 3.3×10d Ba

Verney	Implosion
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• Initial radial velocity is set to 𝑣* 𝑟 = ⁄𝑅+,,-* 𝑟 𝑣. with 𝑣. = 41710 cm/s and 𝑅+,,-* being the
initial inner radius of 8cm.

• For a final inner radius of 5cm the stopping time is about 127µsec. We recover this time when
ca. 99.9% of the initial kinetic energy is dissipated into internal energy.

• The radial distance of inner particles at stopping time is 5cm with a variation of max. 2%.
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• Initial radial velocity is set to 𝑣* 𝑟 = ⁄𝑅+,,-* 𝑟 2 𝑣. with 𝑣. = 67750 /0
1

• For a final inner radius of 3cm the stopping time is about 100µsec. We recover this time when
ca. 99.9% of the initial kinetic energy is dissipated into internal energy.

• The radial distance of inner particles at stopping time is ca. 3cm with about 1.4% of particles
having a smaller radial distance with 2.5cm < r < 3.0cm

3D	Verney	Implosion
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Taylor	Anvil

(e.g. Burton et al., JPC 2015)
• A cylindrical copper rod with radius

0.32cm and length 3.24cm impacts a
rigid surface at a velocity of 227 m/s.

• There are no analytical results for this
particular test problem but we can
compare to e.g. other codes.

• Material properties: 𝜌c = 8.930 g/cc,
shear modulus 𝜇 = 4.3333 × 10bb Ba,
yield stress 𝑌c = 4×10d Ba, hardening
modulus 𝑌e = 10d Ba, and Grüneisen
EoS with 𝑐c = 3.94×10fcm/s, s = 1.48,
Γ = 2.0.

• At 80 µsec we find a height ~ 2.17 cm
and foot radius ~ 0.66 cm which is in
good comparison to published results

Fig.: Taylor anvil shape at 80µsec from FleCSPH
together with the outline (red dashed line) of
the anvil from Burton et al. at the same time.
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Impact	Simulations

Simplified impact simulations can verify a code’s capability to model the initial stages of
crater formation - contact, compression and begin of the excavation process for a given
material EoS.
Since strength does not play a significant role for the dynamical evolution, it is not included
in this setup. The target and projectile are composed of Aluminum and modeled with the Al-
6061 Mie-Grüneisen EoS.

ESA: Lab test impact
between a small
sphere of Al
traveling at ca.
6.8km/s and a block
of Al 18cm thick.
This test simulates
what can happen
when a small space
debris object hits a
spacecraft.

Standard 3D impact test with an Al projectile
hitting an Al half-space under a 45 degree angle
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1D	Impact	Simulation

For 1D simulations, we can compare the maximum pressure at the impact site to an analytic
solution 𝑃 = 𝜌c 𝑐c + 𝑠𝑣r 𝑣r where 𝑣r is the particle velocity. The initial density of
projectile and target is set to 𝜌c = 2.7 s

tu& while the sound speed 𝑐c = 5.35 � 10f tuv

Impact	velocity	5km/s Impact	velocity	20km/s

analytic analytic
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3D	Impact	Simulation

3D impact simulations do not have an analytic solution. However, we can still compare the
maximum pressure close to the impact site and its decrease with distance and time.
Furthermore, in a 45 degree impact, it is expected that the projectile fragments with parts of
it being ejected out of the impact site which we can also see in our simulations.
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Summary	&	Outlook		

• Solid material modeling has been implemented into the LANL SPH code FleCSPH

• FleCSPH now contains the elastic – perfectly plastic material model, plastic hardening,
and maximum-strain breaking

• Elasticity and plasticity have been tested via the Colliding Rubber Ring test, the Verney
Implosion, and the Taylor Anvil test

• FleCSPH also contains several analytic material equations of state: Mie-Grueneisen,
Osborne, and the Tillotson

• 1D-3D Impact simulations have been used for testing the material EoS implementations

• The planned astrophysical application for FleCSPH to study neutron star crust dynamics
only requires the elastic - perfectly plastic material modeling with maximum strain
breaking. However, it would be interesting to implement and test more advanced strength
and damage models. Other possible future goals are the implementation of tabulated
material EoSs, like Sesame tables, and multi-material modeling.
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Backup	Slides
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Astrophysical	EoSs:	
• Analytical:	Ideal	fluid,	Polytropic	and	Piecewise	Polytropic,	Cold	White	Dwarf	Matter
• Tabulated:	Nuclear	for	Astrophysics	(StellarCollapse EoSs),	Helmholtz	

Solid	Material	EoSs:	
• Liquid:		P ρ = ccP (ρ − ρc)
• Mie-Grüneisen (also	in	the	Wilkins	form):	P ρ, u = ρc ccP χ 1 − w'

P
χ 1 − sχ xP +

Γcρu, χ = 1 − y'
y

• Osborne:	P ρ, u = M(z{Mz${|) O'{O(z{ O$z$ {|)$(t'{ t(z)
|){}'

,	η = y
y'
− 1, E~ = uρc

• Tillotson:	P ρ, u =
Γ�Eρ + Aµ + BµP, η =

y
y'
, µ = η − 1; for ρ ≥ ρc or ρ < ρc, E < Ev

aEρ + bEρ |
|'z$

+ 1
xb
+ Aexp −α ηxb − 1 exp −β ηxb − 1 P ; for ρ < ρc, E ≥ Ev~

P�� E − Ev + P��(Ev~ − E) Ev~ − Ev ; for ρ < ρc, Ev ≤ E < Ev~

Equations	of	State	in	FleCSPH
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Boundary	Conditions	

• FleCSPH has simple boundary conditions such as periodic, frozen, and reflective
• In addition, the code can use external potentials and potential walls
• Solid-fluid boundary interactions are currently being implemented. These are important

for e.g. modeling the dynamics of neutron stars with a fluid core and solid crust where the
shear motions of crust and core must be completely decoupled from each other.

A	cut	of	a	thin	shell	
of	the	neutron	star	
crust	with imposed	
toroidal	velocity	
(red	arrows).	The	
shell	is	dynamically	
evolved	and	kept	
stable	via	external	
potentials	and	
potential	walls

Neutron	star	in	
FleCSPH with	a	fluid	
core	(white)	and	solid	
crust	(black).	The	red	
line	shows	the	core-
crust	transition.	
Specific	boundary	
conditions	must	be	
implemented	at	the	
interface	to	decouple	
their	shear	motion	of	
crust	and	core.	


